Learning Grammars for Noun Phrase Extraction by Partition Search
نویسنده
چکیده
This paper describes an application of Grammar Learning by Partition Search to noun phrase extraction, an essential task in information extraction and many other NLP applications. Grammar Learning by Partition Search is a general method for automatically constructing grammars for a range of parsing tasks; it constructs an optimised probabilistic context-free grammar by searching a space of nonterminal set partitions, looking for a partition that maximises parsing performance and minimises grammar size. The idea is that the considerable time and cost involved in building new grammars can be avoided if instead existing grammars can be automatically adapted to new parsing tasks and new domains. This paper presents results for applying Partition Search to the tasks of (i) identifying flat NP chunks, and (ii) identifying all NPs in a text. For NP chunking, Partition Search improves a general baseline result by 12.7%, and a methodspecific baseline by 2.2%. For NP identification, Partition Search improves the general baseline by 21.45%, and the method-specific one by 3.48%. Even though the grammars are nonlexicalised, results for NP identification closely match the best existing results for lexicalised approaches.
منابع مشابه
ITRI-02-14 Learning Grammars for Noun Phrase Extraction by Partition Search
This paper describes an application of Grammar Learning by Partition Search to noun phrase extraction, an essential task in information extraction and many other NLP applications. Grammar Learning by Partition Search is a general method for automatically constructing grammars for a range of parsing tasks; it constructs an optimised probabilistic context-free grammar by searching a space of nont...
متن کاملITRI-02-16 PCFG Learning by Nonterminal Partition Search
pcfg Learning by Partition Search is a general grammatical inference method for constructing, adapting and optimising pcfgs. Given a training corpus of examples from a language, a canonical grammar for the training corpus, and a parsing task, Partition Search pcfg Learning constructs a grammar that maximises performance on the parsing task and minimises grammar size. This paper describes Partit...
متن کاملPCFG Learning by Nonterminal Partition Search
pcfg Learning by Partition Search is a general grammatical inference method for constructing, adapting and optimising pcfgs. Given a training corpus of examples from a language, a canonical grammar for the training corpus, and a parsing task, Partition Search pcfg Learning constructs a grammar that maximises performance on the parsing task and minimises grammar size. This paper describes Partit...
متن کاملThe Role of Lexicalization and Pruning for Base Noun Phrase Grammars
This paper explores the role of lexicalization and pruning of grammars for base noun phrase identification. We modify our original framework (Cardie & Pierce 1998) to extract lexicalized treebank grammars that assign a score to each potential noun phrase based upon both the part-of-speech tag sequence and the word sequence of the phrase. We evaluate the modified framework on the “simple” and “c...
متن کاملNoun Phrase Recognition with Tree Patterns
This paper offers a method for the noun phrase recognition of Hungarian natural language texts based on machine learning methods. The approach learns noun phrase tree patterns described by regular expressions from an annotated corpus. The tree patterns are completed with probability values using error statistics. The noun phrase recognition parser tries to find the best-fitting trees for a sent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002